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Abstract

The main concept of this article is to allow for the optimized tree-like design of the flow distributors to actually define the shape of the
fuel cell, thereby eliminating problems associated with the mismatch between a predecided rectangular shape and a functionally preferred
channel distribution system. The work focuses on direct methanol fuel cells (DMFC). A one-dimensional across-the-cell model is
extended to a two-dimensional along-the-channel model and numerically solved to predict the polarization curves of a direct methanol
fuel cell with tree network channels and of a cell with traditional serpentine channels. For both flow configurations, pressure drop and
pumping power are estimated. Net power densities are computed in terms of constructal parameters and operating conditions. In con-
trast to the traditional rectangular shape of fuel cells, the resulting ‘‘pyramidal’’ or ‘‘double-staircase’’ shape is based on the functionality
of the fluid distribution system. It is found that tree network channels can provide substantially improved electric and net power densities
compared to the traditional non-bifurcating single serpentine channels, as a result of their intrinsic advantage with respect to both mass
transfer and pressure drop. For six (12) branching levels and inlet channel diameters of 0.05, 0.04, and 0.03 cm, the tree network channels
allow for 14% (21%), 17% (26%), and 30% (46%) higher net power densities, respectively.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In this article, constructal tree network channels intro-
duced by Bejan [1–3] are investigated not only as a fluid
distribution concept for the anode and cathode side of
liquid-feed direct methanol fuel cells but also as a means
to functionally define the shape of the fuel cells. A simple
two-dimensional model is numerically solved to predict
polarization curves, electric power density curves, and net
power density curves of a direct methanol fuel cell with tree
network channels as fluid distributors, and compare them
to the respective curves of a cell with a traditional non-
bifurcating serpentine channel. Variation of cell perfor-
mance in terms of constructal and operating condition
0017-9310/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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parameters is discussed and optima are identified. Charac-
teristic variations along the channel of methanol and oxy-
gen concentration, anode and cathode overpotential, and
electric current density are discussed for both tree network
channels and traditional non-bifurcating serpentine chan-
nels. Three-dimensional models [4] provide the most com-
prehensive and fundamental insight into the transport
phenomena in fuel cells. However, their numerical solution
still requires substantial computational time and resources,
making them inappropriate for multiparametric optimiza-
tion studies that usually require a large number of evalua-
tions of an objective function. The functionality-optimized
pyramidal fuel cell design was recently introduced by Senn
and Poulikakos [5] with respect to hydrogen polymer elec-
trolyte fuel cells, showing excellent promise compared to
traditional alternatives. The fundamental characteristics
of laminar mixing, heat transfer, and pressure drop in tree
network channels were also investigated numerically [6],
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Nomenclature

A total cell area, cm2

b current collector width, cm
ca molar concentration of methanol, mol cm�3

cc molar concentration of oxygen, mol cm�3

D diffusion coefficient, cm2 s�1

E electric power density, W cm�2

F Faraday constant, 96485 C mol�1

h channel width, cm
iv exchange current density, A cm�3

J average cell current density, A cm�2

j local proton current density, A cm�2

k concentration factor
L channel length, cm
lb backing layer thickness, cm
lm membrane thickness, cm
lt catalyst layer thickness, cm
N molar flux, mol cm�2 s�1

Nu Nusselt number
n total number of branching levels
nd drag coefficient
P pumping power density, W cm�2

p pressure, Pa
Q local rate of electrochemical reaction, A cm�3

R universal gas constant, 8.314 J K�1 mol�1

Re Reynolds number
Sh Sherwood number
T cell temperature, K
Vcell cell potential, V
v bulk velocity in the channel, cm s�1

x coordinate across the membrane, cm
y coordinate, cm
z coordinate along the channel, cm

Greek symbols
a transfer coefficient
v number of turns in the serpentine channel

e effective porosity
/ channel length ratio
u channel width ratio
c effective order of reaction
g local overpotential in the catalyst layer, V
gi overpotential at the membrane/catalyst layer

interface, V
goc open-circuit potential, V
j mass transfer coefficient, cm s�1

l dynamic viscosity, Pa s
P net power density, W cm�2

r proton conductivity, X�1 cm�1

n loss coefficient

Subscripts

b in the backing layer
h in the channel
i value at the membrane/catalyst layer interface
k at the kth branching level
lim limiting
m in bulk membrane
max maximum
ref reference
s stoichiometric
t in the catalyst layer
w water
0 at the zeroth branching level
v characteristic

Superscripts

a on the anode side
c on the cathode side
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along with their application for thermal management in
polymer electrolyte fuel cells. Vargas and Bejan [7] recently
presented an elemental level thermodynamic optimization
study for the electrodes of alkaline fuel cells. Entropy gen-
eration minimization [8] at the global level presents a major
challenge in fuel cell research.

2. Mathematical formulation

A one-dimensional across-the-cell model originally
developed and experimentally validated by Kulikovsky
[9,10] is utilized to predict the polarization curves and the
electric power density curves of a direct methanol fuel cell
with tree network channels as fluid distributors. The origi-
nal model [9,10] accounts for methanol and oxygen mass
transfer through the backing layers, methanol permeation
through the membrane, and non-uniform overpotential
distributions across the finite-size catalyst layers. The
model is extended to a two-dimensional model that addi-
tionally takes into account methanol and oxygen consump-
tion along the channels, mass transfer between the channels
and the backing layers, mass transfer in the lateral direc-
tion indicated by the y axis in Fig. 1, as well as overpoten-
tial variations along the channel. In addition, pressure drop
and pumping power required for the fluid circulation are
estimated considering also effects from bifurcations. Diffu-
sion mass transport along the streamwise direction z (see
Fig. 1) is neglected due to the high Peclet number. The



Fig. 1. Schematic drawing of methanol and oxygen concentration
distributions across the cell, including anode channel (I), anode backing
layer (II), anode catalyst layer (III), membrane (IV), cathode catalyst layer
(V), cathode backing layer (VI), and cathode channel (VII).

Fig. 2. Geometric structure of the pyramidal tree network fluid delivery
system including channels (white) and current collector shoulders (black).
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model is based on a variety of other assumptions [9,10]:
Ohmic losses due to electron transport are neglected, thus
a high electrical conductivity of the current collector plates,
backing layers, and catalyst layers is assumed. Reactant
concentrations are assumed to be constant across the
finite-size catalyst layers. A constant diffusion coefficient
of methanol is assumed inside the membrane. Methanol
permeated through the membrane is assumed to completely
react with oxygen in the cathode catalyst layer. The meth-
anol concentration on the cathode side is assumed to be
much smaller than the methanol concentration on the
anode side. The electrolyte phase is assumed to be ideally
hydrated and constant proton conductivities are assumed
inside the membrane and the catalyst layers. The fluid
velocity is assumed to remain constant along the channel
of a certain branching level. The model is a single-phase
one, two-phase flow [11,12] issues are not considered.
Tafel-like expressions are used to predict the electrochemi-
cal reaction rates at the anode and cathode.

The geometric structure of a cell with tree network chan-
nels as fluid distributors on the anode and cathode side is
outlined in Figs. 1 and 2. The anode tree network and
the cathode tree network are identical and congruently
superimposed. Schematic distributions of reactant concen-
trations across the cell are shown in Fig. 1. The white areas
in Fig. 2 represent schematically the channels of the tree
network having one inlet at the zeroth branching level
and a number of 2n outlets at the nth branching level,
where n is the total number of branching levels. This means
that the flow is subject to redistribute n times. Square cross-
sectional channels of width hk are considered, where the
subscript k indicates the branching level. From the current
collector width bk, the current collector shoulder width
bk � hk follows. The backing layer thicknesses lab and lcb,
the catalyst layer thicknesses lat and lct , and the membrane
thickness lm are constant whereas hk and bk vary from one
branching level to the next higher. The superscripts a and c
refer to the anode and cathode side, respectively. The sub-
scripts b, t, and m refer to the backing layer, the catalyst
layer, and the membrane, respectively. It is assumed that
at the interface between two consecutive branching levels,
the flow is subject to redistribute uniformly to the channels
of the higher branching level. This can be achieved with a
gap of small flow resistance, for example. However, such
manufacturing issues are not the main subject of this study.
The aim of the present study is to investigate the funda-
mental mass transfer and fluid dynamics aspects of the
problem. The model is based on first principles and it is
chosen for its effectiveness if one takes into account its
simplicity.
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2.1. Governing equations: branching level k

In direct methanol fuel cells, methanol and water are
converted to carbon dioxide and protons at the anode,
according to

CH3OH+H2O!CO2 +6Hþ +6e�. ð1Þ

Protons are transported through the electrolyte phase of
the catalyst layers and the membrane to react with oxygen
in the cathode catalyst layer, according to

O2 + 4Hþ +4e� ! 2H2O. ð2Þ

In this study, the case where dry air is fed on the cathode
side is considered. A constant channel width ratio u be-
tween two consecutive branching levels is imposed, such
that the channel width at the kth branching level hk can
be related to the channel width at the zeroth branching
level h0 as

hk ¼ h0uk; ð3Þ
where hk+1 = hku. The current collector width scales iden-
tically and

bk ¼ b0uk ð4Þ
holds, where bk+1 = bku. The constant length ratio / re-
lates the channel length at the kth branching level, given by

Lk ¼ L0/
k; ð5Þ

to the channel length at the zeroth branching level L0,
where Lk+1 = Lk/. It is assumed that the number of chan-
nels increases by a factor of two from one branching level
to the next higher. A mass balance at the interface between
two consecutive branching levels then leads to

vakh
2
k ¼ 2vakþ1h

2
kþ1; ð6Þ

where vak represents the bulk velocity in an anode channel
of the kth branching level that can be expressed in terms
of the anode inlet velocity va0 at the zeroth branching level,
given by

vak ¼ 2�ku�2kva0. ð7Þ
In this study, u = 2�1/3 is assumed and therefore the fluid
velocity is subject to decrease by a factor of 2�1u�2 �
0.79 from one branching level to the next higher branching
level. Replacing the superscript a by c in Eqs. (6) and (7)
leads to analogous relations on the cathode side. Herein,
it is implicitly assumed that the bulk velocities are constant
along the channels of a certain branching level, that is,
vak ¼ const. and vck ¼ const. Conservation of electric current
in the anode catalyst layer is formulated as

ojk
oxk

¼ Qa
k ; ð8Þ

where jk is the local proton current density in the catalyst
layer, xk is the across-the-cell coordinate, and Qa

k is the vol-
umetric transfer current density. Ohm�s law relates the local
current density to the local electric field through the cata-
lyst layer proton conductivity ra

t , that is

jk ¼ ra
t

ogak
oxk

; ð9Þ

where the anode overpotential gak substitutes the local elec-
trolyte phase potential. Note that gak is defined as the differ-
ence between the solid phase potential and the local
electrolyte phase potential, where the solid phase potential
is assumed to be constant. The volumetric transfer current
density can be written as

Qa
k ¼ iav

cat;k
caref

� �ca

exp
aaF
RT

gak

� �
; ð10Þ

where iav is the exchange current density, c
a
t;k is the methanol

concentration in the anode catalyst layer, caref is the refer-
ence concentration, ca is the reaction order, aa is the trans-
fer coefficient, F is the Faraday constant, R is the universal
gas constant, and T is the temperature. Identical relations
can be formulated for the cathode catalyst layer, that is

ojk
oxk

¼ �Qc
k; ð11Þ

jk ¼ �rc
t

ogck
oxk

; ð12Þ

and

Qc
k ¼ icv

cct;k
ccref

� �cc

exp
acF
RT

gck

� �
; ð13Þ

where cct;k is the oxygen concentration in the cathode cata-
lyst layer. Note that the local cathode overpotential gck is
defined as the difference between the local electrolyte phase
potential and the solid phase potential, where the latter is
assumed to be constant. The flux of methanol mass transfer
from the bulk fluid flow in the channel to the catalyst layer
can be written as

cah;k � cat;k
ðja

h;kÞ
�1 þ ðja

b;kÞ
�1

¼
ji;k
6F

þ Nk; ð14Þ

where cah;k is the mean molar concentration of methanol in
the anode channel (the subscript h refers to the channel),
ja
h;k is the mass transfer coefficient between the bulk fluid

flow and the channel/backing layer interface, ja
b;k is the

mass transfer coefficient between the channel/backing layer
interface and the catalyst layer, ji,k is the value of the local
proton current density at the membrane/catalyst layer
interface (the subscript i refers to the membrane/catalyst
layer interface), and

Nk ¼
Dmcat;k
lm

þ nd
ji;k
F

cat;k
wa

ð15Þ

denotes the flux of methanol through the membrane. Here-
in, Dm is the diffusion coefficient of methanol in the mem-
brane, nd is a drag coefficient that defines the number of
methanol molecules transported through the membrane
by one proton, and wa is the water concentration on the
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anode side. In the first term on the right-hand side of Eq.
(15) it is assumed that the methanol concentration in the
cathode catalyst layer is much smaller than in the anode
catalyst layer. Similarly, the flux of oxygen mass transfer
from the bulk fluid flow in the channel to the cathode cata-
lyst layer can be formulated as

cch;k � cct;k
ðjc

h;kÞ
�1 þ ðjc

b;kÞ
�1

¼
ji;k
4F

þ 3

2
Nk; ð16Þ

where cch;k is the mean oxygen concentration in the cathode
channel. It is assumed that methanol transported through
the membrane completely reacts with oxygen in the cath-
ode catalyst layer, according to

2CH3OH+3O2 ! 2CO2 +4H2O. ð17Þ

For laminar fully developed flow in a square duct with
three adiabatic walls and a wall with a uniform heat flux,
the Nusselt number Nu is constant, that is, Nu = 2.712
(see Ref. [13]). The Sherwood number Sh can be related
to the Nusselt number Nu according to the Reynolds anal-
ogy [14,15], Sh = NuLe, where Le = Sc/Pr is the Lewis
number, Sc is the Schmidt number, and Pr is the Prandtl
number. For dry air that is fed on the cathode side, Le �
1 applies. For the liquid that is fed on the anode side, the
Chilton–Colburn analogy [14,15], Sh = Nu Le(Pr/Sc)2/3,
suggests that the Sherwood number and the Nusselt num-
ber are of the same order of magnitude in this study. In
order to remain consistent in accuracy, Sh/Nu = 1 is
assumed in this analysis. The Sherwood number for mass
transfer between the bulk fluid flow in the channel and
the channel/backing layer interface is given then by

Shah ¼ 2:7; ð18Þ

and the corresponding mass transfer coefficient at the kth
branching level reads

ja
h;k ¼ ShahD

a
h=hk; ð19Þ

where Da
h denotes the methanol diffusion coefficient in the

anode channel. The Sherwood number for mass transfer
between the channel/backing layer interface and the cata-
lyst layer shall be empirically defined as

Shab;k ¼ ½1þ ðbk � hkÞ=ð4labÞ�
�1. ð20Þ

The corresponding mass transfer coefficient at the kth
branching level reads

ja
b;k ¼

Shab;kD
a
b

lab
¼ Da

b

flab þ ½lab þ ðbk � hkÞ=2�g=2
; ð21Þ

where Da
b is the effective methanol diffusion coefficient in

the anode backing layer. The effective diffusion length scale
in Eq. (21), denoted by the denominator, is defined as the
mean value between a minimum diffusion length lab and a
maximum diffusion length lab þ ðbk � hkÞ=2 between the
channel/backing layer interface and the catalyst layer (see
Fig. 1). In a previous study [5], three-dimensional solutions
of the Navier–Stokes and species conservation equations
showed that the mass transfer correlation given in Eq.
(20) is a good approximation for low-diameter channels
and bk = 2hk. The Bruggeman correction [16,17] relates
the free-stream diffusion coefficient Da

h to the effective diffu-
sion coefficient Da

b through the backing layer porosity e,
according to

Da
b ¼ Da

he
3=2 ð22Þ

with a tortuosity factor of 3/2. Similar relations hold on the
cathode side and can be written as

Shch ¼ 2:7; ð23Þ
jc
h;k ¼ ShchD

c
h=hk; ð24Þ

Shcb;k ¼ ½1þ ðbk � hkÞ=ð4lcbÞ�
�1
; ð25Þ

jc
b;k ¼

Shcb;kD
c
b

lcb
¼ Dc

b

flcb þ ½lcb þ ðbk � hkÞ=2�g=2
; ð26Þ

and

Dc
b ¼ Dc

he
3=2. ð27Þ

From Eqs. (8)–(10) and Eqs. (14) and (15) a simple relation
between the local anode overpotential gai;k and the local
proton current density ji,k, both evaluated at the mem-
brane/anode catalyst layer interface, can be obtained [9,10]:

ji;k=j
a
v ¼ X a

k tanX
a
k ; ð28Þ

where

X a
k ¼ kak exp

gai;k
gav

 !
1�

ji;k
jalim;k

 !ca
2
4

� 1þ bk þ nd
ji;k
jw;k

 !�ca

�
ji;k
jav

 !2
3
5

1=2

; ð29Þ

gav ¼
RT
aaF

; jav ¼
2ra

t g
a
v

lat
; ð30Þ

kak ¼
lat i

a
v

jav

cah;k
caref

� �ca

; ð31Þ

jalim;k ¼ 6F
cah;k

ðja
h;kÞ

�1 þ ðja
b;kÞ

�1
; ð32Þ

bk ¼
Dm

lm
½ðja

h;kÞ
�1 þ ðja

b;kÞ
�1�; ð33Þ

jw;k ¼ F
wa

ðja
h;kÞ

�1 þ ðja
b;kÞ

�1
; ð34Þ

and

Nk ¼
jalim;k

6F

bk þ ndji;k=jw;k
1þ bk þ ndji;k=jw;k

 !
� ð1� ji;k=j

a
lim;kÞ. ð35Þ

A detailed derivation of Eq. (28) is given by Kulikovsky
[9,10]. From Eqs. (11)–(16) a simple relation between the
local cathode overpotential gci;k and the local proton current
density ji,k, both evaluated at the membrane/cathode cata-
lyst layer interface, can be obtained [9,10]:
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ji;k=j
c
v ¼ X c

k tanX
c
k; ð36Þ

where

X c
k ¼ kck exp

gci;k
gcv

 !
1�

ji;k
jclim;k

� rk

 !cc

�
ji;k
jcv

 !2
2
4

3
5

1=2

; ð37Þ

gcv ¼
RT
acF

; jcv ¼
2rc

tg
c
v

lct
; ð38Þ

kck ¼
lct i

c
v

jcv

cch;k
ccref

� �cc

; ð39Þ

jclim;k ¼ 4F
cch;k

ðjc
h;kÞ

�1 þ ðjc
b;kÞ

�1
; ð40Þ

and

rk ¼
jalim;k

jclim;k

bk þ ndji;k=jw;k
1þ bk þ ndji;k=jw;k

 !
ð1� ji;k=j

a
lim;kÞ. ð41Þ

The derivation of Eq. (36) is given by Kulikovsky [9,10].
Note that Eq. (36) is formulated at a certain position zk.
The latter is the coordinate along the flow direction, it is
zero at the beginning of branching level k, and equals Lk

at the end of branching level k. Mass conservation of meth-
anol and oxygen along the channel reads

dðcah;k=cah;kðzk ¼ 0ÞÞ
dðzk=LkÞ

¼ �
ji;k
jas;k

� 6F
Nk

jas;k
; ð42Þ

and

dðcch;k=cch;kðzk ¼ 0ÞÞ
dðzk=LkÞ

¼ �
ji;k
jcs;k

� 6F
Nk

jcs;k
; ð43Þ

respectively. Herein, the quantities

jas;k ¼ 6F
h2kv

a
kc

a
h;kðzk ¼ 0Þ
bkLk

; ð44Þ

and

jcs;k ¼ 4F
h2kv

c
kc

c
h;kðzk ¼ 0Þ
bkLk

ð45Þ

represent the stoichiometric current densities of the kth
branching level on the anode and cathode side, respec-
tively. They are related to the cell stoichiometric current
densities jas and jcs as

jas ¼ jas;0
1Pn

k¼0/
kuk2k

; ð46Þ

and

jcs ¼ jcs;0
1Pn

k¼0/
kuk2k

; ð47Þ

respectively, where jas ¼ jas;0b0L0=A and jcs ¼ jcs;0b0L0=A fur-
ther applies. In Eqs. (42) and (43) it is assumed that the
bulk velocities are constant along the channels of a certain
branching level, that is, vak ¼ const. and vck ¼ const. Diffu-
sion mass transport along the streamwise direction zk is
neglected due to the high Peclet numbers Peak ¼ vakLk=Da
h

and Peck ¼ vckLk=Dc
h in this study. Averaging the local cur-

rent density ji,k along the channel yields an average current
density of the kth branching level, given by

�ji;k ¼ L�1
k

Z Lk

0

ji;k dzk. ð48Þ
2.2. Governing equations: tree network

The model describing the transport phenomena at a cer-
tain branching level k, as discussed in the last subsection, is
used to predict the current–voltage behavior of a cell with
an entire tree network channel system including n branch-
ing levels. The average cell current density can then be writ-
ten as

J ¼ A�1
Xn
k¼0

�ji;kLkbk2
k; ð49Þ

where

A ¼
Xn
k¼0

Lkbk2
k ð50Þ

is the total cell area. The factor Lkbk2
k in Eq. (49) repre-

sents the cell area that belongs to the kth branching level.
If the cell potential Vcell is constant along the tree network
channels, then J and Vcell describe the current–voltage
behavior of a cell with tree network fluid distributors on
the anode and cathode side.
2.3. Pressure drop and pumping power

Electrochemical reaction rates depend on local reactant
concentrations. Since the reactant concentrations decrease
downstream the channels, the local current density also
decreases along the flow direction. The higher the fluid inlet
velocities, the lower the relative reduction in reactant con-
centrations along the channels is, for a constant cell poten-
tial. In the limiting case where the inlet velocities tend to
infinity, the reactant concentrations remain constant along
the flow direction and the average cell current density cor-
responds to the local current density at the inlet. Hence, the
electric power density can be enhanced by increasing the
anode and cathode inlet flow rates or the stoichiometric
flow ratios, however, the pumping power required for the
fluid circulation is increased at the same time. If a consid-
erable amount of electric power is required for pumping
power, the net power available to the user can be substan-
tially reduced, implying reduced overall fuel cell efficiency.
Consequently, there exists a thermodynamic optimum in
this context. For the optimization of the fluid distribution
system of direct methanol fuel cells, it is therefore impera-
tive that pressure drop be considered as a loss mechanism.

The pressure drop in the tree network channels can be
estimated by assuming geometrically similar shapes of
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channel cross sections. On the anode side, the overall pres-
sure drop can be written as

Dpa ¼
Xn
k¼0

Ca Lkvak
h2k

þ
Xn�1

k¼0

nqaðvakÞ
2
=2; if n P 1; ð51Þ

or

Dpa ¼ Ca L0va0
h20

1� /nþ1=ð2nþ1u4ðnþ1ÞÞ
1� /=ð2u4Þ

þ nqaðva0Þ
2

2

1� ð4u4Þ�n

1� ð4u4Þ�1
; if n P 1; ð52Þ

and

Dpa ¼ Ca L0va0
h20

þ vnqaðva0Þ
2

2
; if n ¼ 0; ð53Þ

where n = 0 indicates a tree network with zero branching lev-

els which essentially corresponds to a single non-bifurcating

channel, representing a traditional serpentine fluid delivery

system. The resistance coefficient n accounts for the pres-
sure drop due to bifurcations in the tree network. An iden-
tical resistance coefficient n is assumed to account for the
pressure drop due to turns in the traditional non-bifurcat-
ing channel. The factor v indicates the number of turns and
qa is the fluid density. The coefficient Ca is given as

Ca ¼ lafRe=2; ð54Þ
where the friction factor for a square cross-sectional chan-
nel under fully developed flow conditions is given as
fRe � 56.9 (see Ref. [13]). The pumping power density on
the anode side, defined as pumping power per cell area
A, is given then as

P a ¼ h20v
a
0Dp

aA�1; ð55Þ
where h20v

a
0 is the volumetric inlet flow rate on the anode

side. Replacing the superscript a by c in Eqs. (51)–(55)
leads to the pumping power density Pc on the cathode side.

2.4. Electric and net power density

The cell potential Vcell is obtained by subtracting the
main voltage losses, that is, the anode overpotential, the
cathode overpotential, and the membrane potential loss,
from the open-circuit potential goc, and may be written as

V cell

goc
¼ 1�

gai;k
gav

gav
goc

�
gci;k
gcv

gcv
goc

�
ji;k
jm

ð56Þ

with jm = rmgoc/lm, where rm is the proton conductivity in
the membrane and lm is the membrane thickness. The elec-
tric power density E of the cell, defined as the total electric
power per cell area A, is given then as

E ¼ JV cell. ð57Þ
Finally, a net power density

P ¼ E � P a � P c ð58Þ
can be defined as the difference between the electric power
density and the power density required for fluid circulation
on the anode and cathode sides.
3. Solution method

The model is solved numerically along the tree network.
The methanol concentration at the anode inlet, the oxygen
concentration at the cathode inlet, and the cell potentialVcell

are prescribed first. The equations governing transport in
the across-the-cell direction xk are then solved numerically.
Herein, the local proton current density ji,k at the mem-
brane/catalyst layer interface is first estimated, based on
which the anode overpotential gai;k and the cathode overpo-
tential gci;k can be numerically obtained through Eqs. (28)
and (36), respectively, using the secant method. The result-
ing cell potential can then be calculated from Eq. (56). If it
does not coincide with the prescribed cell potential, then a
new value for ji,k is estimated and the previous steps are
repeated until convergence is achieved. This outer iteration
loop is addressed again with the secant method. The initial
value problem given by Eqs. (42) and (43) is numerically
solved with a standard Runge–Kutta method, where the just
described across-the-cell procedure is repeated at each inte-
gration step. The numerical solution converges very quickly
due to the fourth order error of the Runge–Kutta method.

4. Results and discussion

In this section, the effect of geometric and operating
parameter variations on the polarization curve, the electric
power density curve, and the net power density curve is dis-
cussed. In addition, the characteristic variations along the
tree network of methanol and oxygen concentration, anode
and cathode overpotential, and current density are com-
pared to the respective characteristics of a single non-bifur-
cating channel. A constant cell area A is considered for
both flow distribution systems. The numerical results are
based on the parameters listed in Table 1.

4.1. Concentration variation along the channels

The variation of the methanol concentration cah;k and the
oxygen concentration cch;k along the channels of a tree net-
work with n = 6 number of branching levels is shown in
Fig. 3(a) for different anode inlet velocities va0 and cathode
inlet velocities vc0. The inlet Reynolds numbers on the
anode and cathode side are defined as Rea0 ¼ qava0h0=l

a

and Rec0 ¼ qcvc0h0=l
c, respectively. Labels indicate values

of vc0 where v
a
0 ¼ 0:02vc0=5. Note that the along-the-channel

coordinate z is defined as z = zk + Lk�1 + Lk�2 + � � � + L0

and that the total length L is defined as L = L0 + L1 +
L2 + � � � + Ln, such that z/L = 0 and z/L = 1 refer to the
inlet and outlets of the tree network, respectively. Concen-
tration variations along a single non-bifurcating channel
covering the same cell area A are shown in Fig. 3(b) for
different inlet velocities. The two graphs indicate how
the characteristic concentration profiles along the tree
network fundamentally differ from the characteristic con-
centration profiles along a single non-bifurcating channel.
In the tree network channels, the reactant concentrations



(a)

(b)

Fig. 3. Variation of the methanol concentration cah;k (solid lines) and the
oxygen concentration cch;k (dashed lines) along the flow direction for
different inlet velocities va0 and vc0 (i.e., v

a
0 ¼ ð0:01; 0:02; 0:04; 0:08Þ m=s and

vc0 ¼ ð2:5; 5; 10; 20Þ m=s) corresponding to Rea0 ¼ ð15; 30; 60; 120Þ and
Rec0 ¼ ð57; 115; 229; 459Þ, with b0 = 0.1 cm, h0 = 0.05 cm, and Vcell =
0.3 V. Labels indicate values of vc0 where v

a
0 ¼ 0:01vc0=2:5. (a) Tree network

fluid distributor with n = 6, u = 2�1/3, and / = 2�1/3. (b) Traditional fluid
distributor.

Table 1
Parameters

Cell temperature T (K) 363d

Anode pressure level pa (bar) 1d

Cathode pressure level pc (bar) 1e

Open-circuit potential goc (V) 1.21
Membrane thickness lm (cm) 0.0206d

Anode catalyst layer thickness lat (cm) 0.0015d

Cathode catalyst layer thickness lct (cm) 0.005d

Backing layer thickness lab, l
c
b (cm) 0.03d

Membrane proton conductivity rm (X�1 cm�1) 0.1d

Catalyst layer proton conductivity rt(X
�1 cm�1) 0.01d

Reference molar concentration caref (mol cm�3) 1.0 · 10�3d

Reference molar concentration ccref (mol cm�3) 3.2 · 10�5d

Anode exchange current density iav (A cm�3) 1.1 · 10�2d

Cathode exchange current density icv (A cm�3) 1.1 · 10�2d

Effective order of anode reaction ca 0.5d

Effective order of cathode reaction cc 1d

Anode transfer coefficient aa 0.8d

Cathode transfer coefficient ac 0.7d

Backing layer effective porosity e 0.2e

Dynamic viscosity la (Pa s) 3.2 · 10�4f

Dynamic viscosity lc (Pa s) 2.1 · 10�5f

Loss coefficient n 1.0g

Drag coefficient nd 1.0d

Inlet methanol concentration cah;0ð0Þ (mol cm�3) 1.5 · 10�3e

Inlet oxygen concentration cch;0ð0Þ (mol cm�3) 6.96 · 10�6

Total flow-field area A (cm2) 9d,h

Diffusion coefficient of methanol
in the channel Da

h (cm2 s�1) 2.0 · 10�4i

in the anode backing layer Da
b (cm2 s�1) 1.8 · 10�5d

in the membrane Dm (cm2 s�1) 1.0 · 10�5d

Diffusion coefficient of oxygen
in the channel Dc

h (cm2 s�1) 0.29j

in the cathode backing layer Dc
b (cm2 s�1) 2.6 · 10�2k

d Ref. [9].
e Assumed.
f Ref. [19].
g Ref. [20].
h Ref. [21].
i Obtained through Eq. (22).
j Ref. [14].
k Obtained through Eq. (27).
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decay faster towards the outlets than near the inlet (see
Fig. 3(a)). The opposite is the case for the non-bifurcating
channel (see Fig. 3(b)). The characteristic concentration
profiles along a single branching level reflect the character-
istics of a traditional channel, whereas the sequence of
profiles including more than one branching level has a
different characteristic. This fundamental difference is due
the fact that the channel cross section and the Reynolds
number decrease in the tree network from one branching
level to the next higher. The Reynolds numbers of consec-
utive branching levels are related as Rek+1/Rek = 1/(2u).
For a channel width ratio u = 2�1/3, Rek+1/Rek � 0.63
results.

4.2. Current density variation along the channels

The variation of the local current density along the
channels is shown in Fig. 4 for both flow configurations
and different inlet flow rates. For the tree network, local
discontinuities appear at the interface between two consec-
utive branching levels, since the geometric details of the
transition are not taken into account and a sudden change
in channel width is considered. The lower the inlet flow
rates, the more the local current density decays along the
tree network. For low inlet flow rates the distribution of
the local current density has its maximum at the inlet.
For high inlet flow rates, the maximum of the local current
density distribution is shifted downstream the channels. It
should be noted that if the inlet flow rates tend to infinity,
the variation of the local current density along the tree net-



(a)

(b)

Fig. 4. Variation of the current density ji,k along the flow direction for
different inlet velocities va0 and vc0 (i.e., v

a
0 ¼ ð0:01; 0:02; 0:04; 0:08Þ m=s and

vc0 ¼ ð2:5; 5; 10; 20Þ m=s) with b0 = 0.1 cm, h0 = 0.05 cm, and Vcell = 0.3 V.
Labels indicate values of vc0 where v

a
0 ¼ 0:01vc0=2:5. (a) Tree network fluid

distributor with n = 6, u = 2�1/3, and / = 2�1/3. (b) Traditional fluid
distributor.

Fig. 5. Variation of the local current density ji,k along the flow direction
for different numbers of branching levels n [i.e., n = (0,1,2,3, . . .,7)] with
va0 ¼ 0:01 m=s, vc0 ¼ 2:5 m=s, b0 = 0.1 cm, h0 = 0.05 cm, u = 2�1/3, / =
2�1/3, and Vcell = 0.3 V.
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work is described by a right-angled monotonically increas-
ing staircase-shaped ‘‘curve’’ with its maximum near the
outlet. The term ‘‘staircase-shaped’’ or ‘‘pyramidal’’ as part
of the name of the herein proposed fuel cell fluid distribu-
tion concept refers in fact not only to the geometric struc-
ture but also to the intrinsic nature of the entire transport
phenomena. The variation of the local current density
along the tree network is shown in Fig. 5 for different num-
bers of branching levels n.

4.3. Electric and net power densities

The polarization curves of a cell with tree network chan-
nels as fluid distributors are shown in Fig. 6(a) for different
inlet flow rates, together with the polarization curves of a
cell with a single non-bifurcating channel. If the flow rate
is increased, the high current density end of the polariza-
tion curve is shifted to the right, that is, the limiting current
density is increased, approaching asymptotically a maxi-
mum limiting current density at infinite inlet flow rates. It
can be seen that for a constant cell potential the tree net-
work channels provide higher cell current densities than
the traditional channels. The corresponding electric power
density curves are plotted in Fig. 6(b). For inlet velocities vc0
of 5, 10, 20, 30, 50, and 1 m/s, it is seen that compared to
the traditional system, the tree network system provides
3.9%, 4.9%, 5.3%, 5.4%, 5.5%, and 5.5% higher maximum
electric power densities, respectively. Herein, the maxima
of the electric power density curves are compared. The
net power density curves are shown in Fig. 6(c). For inlet
velocities vc0 of 5, 10, 20, and 30 m/s, it is seen that com-
pared to the traditional system, the tree network system
provides 6.3%, 14%, 59%, and 8.4 · 102% higher maximum
net power densities, respectively. For n = 9, this last
sequence reads 7.7%, 17%, 69%, and 1.2 · 103% (see
Fig. 7(a)). For n = 12, the sequence reads 8.3%, 19%,
77%, and 1.9 · 103% (see Fig. 7(b)). For n = 15, the
sequence reads 8.7%, 21%, 83%, and 3.2 · 103% (see
Fig. 7(c)).

4.4. Maximum electric and net power densities

A fixed geometry of a tree network channel system shall
be considered first, for which the net power density is to be
optimized in terms of two optimization parameters: the
inlet flow rate and the average cell current density. From
Fig. 6(c) it can be seen that there exists an optimum pair,
that is, an optimum inlet flow rate and an optimum average



(a)

(b) (c)

Fig. 6. Performance of a cell with a traditional fluid distributor (solid lines) and a cell with a tree network fluid distributor (dashed lines) for different
inlet velocities va0 and vc0 [i.e., va0 ¼ ð0:02; 0:04; 0:08; 0:12; 0:2;1Þm=s and vc0 ¼ ð5; 10; 20; 30; 50;1Þm=s] for b0 = 0.1 cm, h0 = 0.05 cm, n = 6, u = 2�1/3,
/ = 2�1/3, and v = 6. Labels indicate values of vc0 where v

a
0 ¼ 0:02vc0=5. (a) Polarization curves, (b) electric power density curves, and (c) net power density

curves.
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current density, which together provide a maximum net
power density. This maximum can be obtained from the
maximum of the envelope enclosing the continuous set of
constant velocity curves in Fig. 6(c). The same holds for
the traditional fluid distribution system. Note that the max-
imum electric power density is simply obtained from the
maximum of the curve for which the inlet flow rates tend
to infinity (see Fig. 6(b)).

The maxima of such envelopes are plotted in Fig. 8 for
different inlet channel diameters h0 and different numbers
of branching levels n. In Fig. 8(a), absolute values are plot-
ted for the electric power density and the net power density.
In Fig. 8(b), these absolute values are scaled with the cor-
responding values of a traditional non-bifurcating channel,
to compare the two flow distribution systems. From
Fig. 8(a), it can be seen that the higher the number of
branching levels, the higher the electric power density is,
and the same holds for the net power density. The net
power density increases for increasing inlet channel diame-
ters h0 due to a reduced pressure drop. In contrast, the elec-
tric power density decreases for increasing channel
diameters due to enhanced resistances to mass transfer.
The graphs suggest that in trying to maximize the net
power density, the number of branching levels must be
maximized and the inlet channel diameter must correspond
to the higher bound of the parameter range considered
here. A finite inlet channel diameter range of practical
interest is discussed. If the higher bound of the inlet chan-
nel diameter range in Fig. 8(a) and (b) is extended towards
higher values, the net power density curves in Fig. 8(a) are



(a) (b)

(c)

Fig. 7. Performance of a cell with a traditional fluid distributor (solid lines) and a cell with a tree network fluid distributor (dashed lines) for different inlet
velocities va0 and vc0 [i.e., va0 ¼ ð0:02; 0:04; 0:08; 0:12; 0:2Þ m=s and vc0 ¼ ð5; 10; 20; 30; 50Þ m=s] with b0 = 0.1 cm, h0 = 0.05 cm, u = 2�1/3, / = 2�1/3, and
v = n. Labels indicate values of vc0 where va0 ¼ 0:02vc0=5. (a) Net power density curves for n = 9. (b) Net power density curves for n = 12. (c) Net power
density curves for n = 15.
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expected to have a maximum and the scaled net power den-
sity curves in Fig. 8(b) are expected to have a minimum,
since the electric power density is monotonically decreasing
for increasing inlet channel diameters. The number of
branching levels is limited by a manufacturing constraint;
that is, there exists a maximum number of branching levels
that can be manufactured onto a plate of finite size,
although with today�s MEMS techniques [18] channels of
diameters as small as of the order of 100 nm do not present
particular manufacturing challenges. For a tree network
with n = 6, it is seen from Fig. 8(a) and (b) that compared
to the traditional system with n = 0 and v = 6, the tree net-
work system provides 30%, 17%, and 14% higher maxi-
mum net power densities for inlet channel diameters h0 of
0.03, 0.04, and 0.05 cm, respectively. For a tree network
with n = 12, it is seen that compared to the traditional sys-
tem with n = 0 and v = 12, the tree network system pro-
vides 46%, 26%, and 21% higher maximum net power
densities for inlet channel diameters h0 of 0.03, 0.04, and
0.05 cm, respectively.

It should be noted that the effect of bubbles on the
anode side was neglected in this study. In cases where it
occurs, the formation of bubbles is expected to increase
the volumetric flow rate in the channel, according to con-
servation of mass. The presence of bubbles will also affect
friction, in particular at high void fractions. In addition,
the dynamic wetting behavior between the liquid phase,
the gaseous phase, and the solid phase of the wall or the
porous channel/backing layer interface will play a role in
this context, especially for the smaller channels of the



(a)

(b)

Fig. 8. Maximum electric power density (dashed lines) and maximum net
power density (solid lines) based on b0 = 2h0, u = 2�1/3, / = 2�1/3, and
va0 ¼ 0:02vc0=5. (a) Absolute values for the tree network system (n > 0) and
the traditional system (n = 0). (b) Values for the tree network system
(n > 0) are scaled with the corresponding values of the traditional system
(n = 0).
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higher branching levels. In the smaller channels, the pres-
sure differences between the gaseous and liquid phases
may not be negligible. Furthermore, different two-phase
flow regimes are to be expected within the proposed tree
network channel system containing multiple length scales.

5. Conclusions

Pyramidal direct methanol fuel cells were designed from
tree network distribution channels. In contrast to the tradi-
tional a priori imposed rectangular shapes of fuel cells, the
resulting pyramidal shape of the fuel cell is based on the
functionality of the fluid distribution system. A one-dimen-
sional across-the-cell model was utilized and extended in
this study to a two-dimensional model to quantify the pro-
posed concept. The current–voltage behavior was predicted
for both flow distribution systems and it was shown that it
is imperative that the pressure drop and the related pump-
ing power be considered as a loss mechanism when opti-
mizing the fuel cell with respect to maximum net power
densities. It was found that tree network channels can pro-
vide substantially improved electric and net power densities
compared to the traditional non-bifurcating serpentine
channels, due to reduced mass transfer resistance between
the channel and the channel/backing layer interface,
reduced mass transfer resistance in the lateral direction of
the backing layer, and reduced pressure drop and pumping
power. The influence of the variation of geometric and
operating parameters on the electric and net power density
were discussed and optima identified. It was shown that
tree network channels on pyramidal shaped plates have
the potential to significantly improve the performance of
direct methanol fuel cells due to their intrinsic advantage
with respect to both mass transfer and pressure drop.
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